NONSTATIONARY HEATING OF A FIXED
GRANULAR MASS

Yu. A, Buevich and E. B, Perminov UDC 536.244:66.096.5

The reduction of the system of heat-transfer equations in phases of a disperse medium to a
single equation is considered. The problem of heating a layer of granular material by a
stream of hot fluid is investigated as an illustration.

The regularities of heat transfer between granular material particles and the flux of a continuous medium
are of significant applied interest in connection with processes of heat treatment of items in granular heat-
carrier layers, of drying and roasting dispersed materials, of chemical reactor operation, and of other appa-
ratus with a fixed or fluidized granular bed, as well as in connection with problems of mastering geothermal
resources, producing thermal methods of acting on oil-bearing strata, etc.

Mathematical modeling of heat-transport processes in disperse media and the production of engineering
methods for their analysis under different specific conditions are made difficult both by the lack of a sufficiently
representative general physical model and uncertainties manifested in applying known partial variants of the
model and by the fact that the results obtained using them as abasisare ordinarily quite awkward and do not,
by far, always allow simple interpretation. Hence, in addition to the general problem of developing and per-
fecting the physical model itself, the problem also occurs of investigating the applicability conditions of the
partial variants and of their further simplification. One of the widespread methods of describing the heat
transfer in a disperse medium is considered below in such a context.

For simplicity we limit ourselves to an investigation of the heat transfer in a fixed granular mass in
which a fluid is filtered with a filtration velocity su and the contact heat conduction over the body formed by
the particles is neglected. We write the heat-fransfer equation in phases in a continual approx1mat10n in
"quasistationary" form:
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The coefficients A and 8 are here considered independent of the coordinates and time. Equations of type (1)
were quite frequently used on an empirical basis; they were introduced in the domestic literature, e.g., in
[1-3], and they were obtained rigorously on the basis of averaging over the volume and the ensemble in [4, 5].
Neglecting the contact heat conduction under conditions ordinarily encountered is fully justified as can be seen
from numerous experiments as well as from an analysis of such conduction and thermal resistance of a single
contact in [6, 7]. Radiation heat transfer is not taken into account in (1), which limits the analysis to sufficiently
low temperatures.

The independence of A and 8 from the coordinates assumes, firstly, the siructural homogeneity of the
granular material. Secondly, when the Reynolds and Péclet numbers for a single particle are large com-
pared to one so that convective heat dispersion in the intersected pore space of the material and the convec-
tive heat flux on the particle play a part, homogeneity of the filtration flux is also required for this. The
time independence of A and B assumes that the characteristic time of a substantial change in the mean phase
temperatures Ty, Ty is considerably greater than the inner and outer local relaxation times of the temperature
fields outside and inside a single particle. These times agree with a’dycy/Ay,and a’dyc/A;, respectively, in
order of magnitude for low Reynolds and Péclet numbers. As these numbers increase, the relaxation times
for a layer of particles of this size diminish monotonically (see [8], for example), If the last condition is not
satisfied, then both the frequency dispersion of the effective heat conduction A and the time dependence of the
Nusselt number for a particle, i.e., the dispersion of the effective coefficient of interphasal heat transfer 8
investigated in [9], are essential so that the quasistationary formulation considered here ceases to be true,
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The solution of different boundary-value problems for (1), if it is generally successfully obtained, will
ordinarily yield results difficult to see. Hence, it is desirable to reduce the investigation of system (1), first,
to the analysis of a certain equation for a single dependent variable. Such a program is actually formulated
by N. V. Antonishin and his co-workers (see [10], for example). Paper [9] is analogous in nature,

To obtain such an equation it is sufficient to express the quantity 7; in terms of 7, in the general operator
form from the second equation in (1) and to use the formal expansion of the operator in a Taylor series. We
obtain
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where @t is the "natural" time scale of the heat-conduction process in a two-phase dispersed medium. Sub-
stitution of (2) into the first equation in (1) results in obtaining the desired equation which, however, contains an
infinite chain of time derivatives of arbitrarily high order,

It is convenient to introduce a "natural" linear scale oy and dimensionless variables and parameters in
conformity with the equalities
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in addition to the ot. System (1) then takes the form
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and the "equivalent" equation obtained is again written in the form
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Different approximate models correspond to retaining a different number of time derivatives in (5).
Thus, neglecting all such derivatives (the zero approximation) is possible only for the description of the
stationary heat-transfer process. The next, first, approximation results in the usual single-phase parabolic
equation of convective heat conduction, in which the effective specific heat equals the mean specific heat of
the granular material filled with a fluid. This approximation evidently corresponds to an assumption about
the instantaneous equalibration of the phase temperatures, Such a single-temperature model was considered
in [11, 12], for example. The second approximation results in an elliptic equation for 7, (the possibility of
the appearance of elliptic equations in heat-transport processes in a dispersed medium was apparently first
noted in [9]) etc. In contrast to the zero and first approximations, the second approximation takes account of
the difference in the phase temperatures and, therefore, corresponds to a two-temperature model of a dis-
persed medium,

An operator expansion of type (2) has been used earlier in reports on the construction of simplified
rheological models of non-Newtonian media (see {13}, for instance) and has meaning only if the time scale
w™! of the quantity T, is very much greater than the natural scale ay. In fact, upon replacing the operators an/
atN in (2) by P, it is easy to see that the series obtained has a finite radius of convergence w = a{‘. Therefore,
the condition of applicability, in principle, of the approximations discussed above reduces to compliance with
the inequality w << a{’ for the characteristic frequency of the real heat-transfer process.

For a small Péclet number, the steady value of the heat elimination coefficient for a single particle
is on the order of Ma; the number of particles per unit volume is proportional to (1—¢)/a’. Hence, we have
B ~ (L—e)Ma®. Using this in the expression for at from (2), we see that a4 has the same order of magnitude
as one or even both the relaxation times mentioned above. (In this case oztt'1 is the inverse to the Fourier
number usually introduced. However, this is not so, e.g., in the case when the Péclet number is large, i.e.,
convective heat transfer to the particle dominates,) Hence, the condition w « at“‘ is equivalent to the condition
for the validity of the quasistationary model itself in (1), and if this model is legitimate, then the analysis of
its mentioned approximations is equally legitimate.

The connection between the solutions of the "exact" equations (4) and the different approximations ob-
tained from (5) is investigated below in an example of the one -dimensional problem on the heating of a semi-
infinite granular mass, which is of independent interest. A fluid flow with temperature 7, flows into a mass
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occupying the half space x > 0; the initial temperatﬁre of the mass is zero. For simplification, the boundary
condition of the first kind is simply taken for x = 0, i.e., heat transfer in the domain x < 0 is not considered.

For such a problem system (4) has the form
ot d1, 0%, oty ,

—_— = e — Ty —Ty)y, ——— = Tp— Ty (6}
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and Eq. (5), inwhich only N principal time -derivatives remained, is written in the form
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The boundary conditions for (6) and (7) are written identically:
T=Tg X=0, T>0;, 1,0, X—>o00, T >0. {8}
The initial conditions for the system (6) are also of standard form:
TB=17=0 X>0, T=0. (9
The initial conditions for (7) follow formally from (2) and (9):
91, 0",
=T =% T _0,X>0,T=0. 10)
= r aTY! = (
Moreover, it is sometimes more convenient to use the physically evident condition
lim 1y = 1,, X >0. (1)

Toew

For simplification of the calculations, the degree of approximation realized by the solution of the prob-
lem for (7) to the solution of (6) will be considered separately for the cases U < 1 and U > 1 (conductive or
convective heat transfer predominates) for v ~ 0 (which corresponds to a gas flow). Let us apply the Laplace
transform in variable T. The transform of the solution of problem (5), (8), (9 for U < 1 has the form

{o 1 l/ ) 1§ (— 1) ( p )ﬂ/? n
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so that a formal representation follows for the original in the form of a series which can turn out to be con~
venient for small X:
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where Iy(x) is the Bessel function of imaginary argument and My (x) is the Whittaker degenerate hypergeo-
metric function.

For values of T » 1, whichare only of interest in the context of this work, expansion (12) in a series in
p must be used:
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The solution of problem (7), (8), (10), for the parabolic equation (the series in (7) is generally dis~
carded) results in (14), in which all the terms in the square brackets are replaced by one. The solution of
the same problem for an elliptic equation (only the first term of the series in (7) is retained) also yields an
expression of the type (14) in which _the coefficient ~3/8 for p’ in the parentheses is replaced by 1/8. There-
fore, terms proportional to (X/p) pm, where n =10, ..., m = n, are in expansions (14) in the square
brackets, for all three problems under consideration. In the first approximation (the parabolic equation)
only the term w1§1 n =0, m = 0 remains; consequently, the condition for applicability of this approximation
has the form Xp¥? « 1, which corresponds to the inequality T » X*3, The second approximation (elliptic
equation) yields correct values for all terms of the form (Xvp) pn Hence, as is easy to see, p < 1 will be
the condition for its applicability, which corresponds to T > 1, Therefore, in contrast to the problem for
the heat-conduction parabolic equation, which approximates the solution of the exact problem nonuniformly
in X, the problem for the elliptic equation approximates it uniformly, whereby this is the fundamental ad-
vantage of the second approximation of the problem over the first. The next approximations [N > 2 in (7)]
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refine the second somewhat for T > 1 but introduce nothing new in principle. Let us note that T » 1 is the
condition for the adequacy of the formulation of the physical problem in quasistationary form; hence, the solu-
tion of the problem for the elliptic equation is not worse than the solution of the exact problem. All the terms
in the parentheses, except the first, can be neglected in evaluating the original from (14). The first two
terms of the series for the original have the form

T n ‘2 n? X
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It is easy to write explicit expressions for even the succeeding terms of the series (15) which are of high order
in powers of - by using formulas for the inversion of the Laplace transform. The exact solution of the prob-
lem for the parabolic equation is expressed by the first term of this series, Use of series (15) is evidently
convenient only for T > 1, <1,

It is easy to arrive at analogous deductions by considering the problem in the case U > 1 also. The ana-
log of (13) has the form

T e §Y [ X
=1 T)n%‘ - (U)L,._‘(T), 16)

where Ly (x) is the Laguerre polynomial., (Let us note that for y = 0 it is impossible to impose both condi-
tions simultaneously in (10); the second condition in (10) was used in obtaining (16), just as in (13).) Summing
the series in (16) by using the definition of one of the generating functions for the Laguerre polynomials, we
obtain after evaluation

XU
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This is one of the possible modes of writing the solution of the problem under consideration, which is in-
vestigated in [14-18], for example., Let us note that the characteristic linear scale

o, = Ua, = dyceeulp (18)
is in this case independent certainly of A and considerably greater, for U » 1, than ox.

The first approximation to problem (7), (8), (10) yields the trivial result
T_o={1, XIU<T, (19)
Ty 0, XIU>T.

The second corresponds to the problem for the parabolic equation in which the space and time variables change
places (as compared with the usual single-phase heat-conduction equation). Supplementing (7), (8), and (10)
by condition (11) for N = 2, we obtain by using the Laplace transform in the variable X

T 1 it /T _ 1 /T — X
1,'_: =1——2—[erfc—2 kl—/?-—l/g >+exp(T)erfC—2—(W+V§ )J, E= U . (20)

As before, in the case under consideration it is easy to show that (20) approximates the solution of the
exact problem for T » 1, while (19) is just for T > vX/U, The simple solution (20) only turns out to be just as
accurate as the solution of the initial problem (6), (8), (9) presented in a great number of papers (see [14-18],
for example), within the limits of the accuracy in formulating the physical problem, The equivalent parabolic
equation [(7) for U > 1 and N = 2] was obtained earlier by Smirnova [19] by another method. A solution of the
type (20) was obtained by it and a comparison with certain exact solutions was performed,

Therefore, the solution of system (6) or (4) can successfully be replaced by the solution of (7) or (5) in
the general case, in which only the first term in the series of time derivatives is retained, It is easy to see
that this permits a significant simplification of the solution of different boundary-value problems describing
heat transfer in a dispersed medium, especially those in which the domain of the solution has a complex
shape, with complex boundary conditions given in its boundary, or the problem of the heat-conduction equa-~
tion must be solved additionally outside the domain mentioned with boundary conditions of the fourth kind
given on the boundary.
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We now obtain a representation of the solution of the specific problem considered here in the general
case wheny # 0, U~ 1, Introducing the function ¢,

UX . +nT .
(X, T)= -r*exp( 5 't'(—;)—) o(X, T), - @1)
we obtain the following equation for ¢ from (7) for N = 2:
Kal 4 Py _ _(A+W+U2 o (22)
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The conditions imposed on the solution of this equation have the form

(p=0, T=0.and X‘*wr (P=exp(_(—l—‘;“?‘)‘1)v X‘:O:andr_"w~ (23)

Let us apply the Fourier sine transform

X, T)= }(D(X, o) sinwTdo. (24)
8

The solution of the equation obtained from (22) by substituting (24), and which satisfies the condition
from (23) for X —~ =, is written in the form

. Ty
O (X, ) = C(w)exp (—X l/(,,2+(__Y)T._‘) ) (25)
where it follows from the condition from (23) for X = ¢ that
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Therefore, the solution of problem (22), (23) has the form
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Unfortunately, the integral in (27) is not expressed in terms of known functions, but it converges rapidly and
can, consequently, be estimated easily numerically. The quantity Ty is determined by the relationship (21),
while 7 can be found from the relationship

o, |, o4y
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which follows from (2) in the approximation under consideration.

Let us note that the solution obtained in the approximation mentioned will satisfy the first but not the
second initial condition in (10}, whose place is taken by condition (11) in this case. This is related to the
specifics of the approximate boundary-value problem under consideration for the elliptic type equation and
will result, as is easily shown, in an error on the order of T™!, whichis insignificant for T > 1, In particular,
the initial temperature 74 evaluated from (28) will differ slightly from zero.

For U < 1 an explicit expression for the heat flux is easily found from (27). Taking into account that
~ tspexp [(1 +¥)T/2], we obtain

0% _ At 1+yTN 2 S'ex ( % l/mz (192 \) osinoldo
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where K;(x) is the Macdonald function. Relationship (29) is useful in the respect that it permits rapid esti-
mation of the quantity of heat being absorbed by the granular material in different areas of the mass. An
alternate integral representation for ¢ with U <1 also follows from (29) (the formula for &/»X is considered
ag a differential equation for ¢ with the obvious initial condition for X = 0):
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For U > 1 the exponential in (27) can be written approximately in the form exp (—XU/2), after which
result (20) already obtained can easily be reproduced by integration.
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In conclusion, let us make two remarks about the prospects for further research in the direction con-
sidered., Firstly, the assumption usually used in modeling that convective heat transfer predominates in the
presence of filtration turns out to be not so obvious by far for real filtration rates as it is ordinarily assumed
to be. Meanwhile, even the type of solution changes in going from U » 1 to U« 1, Hence, the heat-transport
problem in infiltrable (and also porous generally) masses must be investigated in greater detail for inter-
mediate values of U. This remark is especially important for heat transfer in slightly permeable strata
customary for the use of geothermal resources, the heating of oil-bearing strata, etc,

Secondly, the initial nonstationary stage of a process corresponding to the inequality T<(1 is essential
for a number of problems on the heating of a granular layer or items submerged therein (e.g., on the heating
of a "packet" making contact with the surface in a fluidized bed) Hence, it is quite important to investigate
the influence of a local nonstationarity, i.e., the time dependence of the quantities A and 8 for medium heat
transfer, whose effective solution was acknowledged necessary in [16, 18}, e.g., as well as [9]. This remark
refers to an equal degree to the need to take account of the presence of a layer of elevated porosity adjoining
the solid surface to be placed in the granular material. The latter is usually done by using the semiempirical
insertion of the coefficient of " contact" resistance to heat flux [20]. However, it is easy to see that it is im-
possible to consider this coefficient a quantity independent of time in a substantially nonstationary heat-trans-
port process.

NOTATION

is the particle radius;
is the quantity defined in (26);
is the specific heat;
is the density;
is the Laplace transform parameter;
are the dimensional and dimensionless radius-vectors;
are the dimensional and dimensionless times;
is the parameter introduced in (3);
is the mean velocity in the gaps between particles;
X are the dimensional and dimensionless coordinates;
ax, o  are the time and linear scales;
is the coefficient of interphasal heat transfer;
Y is the parameter introduced in (3);
€ is the porosity;
n=X//T;A {is the heat conduction;
¢=X/U;+ is the temperature;
is the characteristic frequency of the heat-transport process and the Fourier transform
parameter;
¢, ® is the function defined in (21) and its Fourier sine transform; the subscripts zero and one refer
to the continuous and dispersed phases, respectively, and the upper caret denotes the Laplace
function transform,
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FLOW AND HEAT TRANSFER IN COAXIAL JET FLOW
AROUND AN OBSTACLE

I. A. Belov, G. F. Gorshkov, UDC 536,244:532.522
and V, S, Terpigor'ev

Results are presented of an experimental investigation of the gasdynamics and heat transfer in
the reverse flow zone near an obstacle during coaxial jet flow on it along the normal.

In connection with the possibility of a directional influence on the nature of the flow and heat transfer at
the surface of streamlined bodies, a considerable interest has recently been manifested in the problem of in-
teraction between nonuniform flows of the "wake" type and blunt bodies placed across the stream [1-5]. It is
experimentally shown in [2, 3] that a stable circulation flow with reverse currents to the central point of the
body can be realized near the body for definite values of the ratio between the stream velocity at the circum-
ference and the velocity in the central part (the coflow parameter is m = Uy/Up > 1),

The authors posed the problem of studying the effect of the origin of the return currents zone for jet flow
around the obstacle and the possibility of its practical application for the intensification of heat transfer in
the area of jet interaction with obstacles., The investigation, on the whole, is experimental in nature and is a
continuation of [2], inwhich are presented preliminary results on the interaction between a subsonic axisym-
metric jet with circumferential maximum velocity at the nozzle exit and a plane obstacle.

The experimental investigations were performed on an apparatus [6] consisting of a wind tunnel to whose
stilling chamber an axisymmetric contractor representing a Vitoshinskii nozzle with waisting 9 and exit
diameter d; = 100 mm is fastened, and a two-stage coordinating unit with measuring obstacles thereon. To
obtain coaxial jets in the nozzle, an additional central contractor with exit diameter dy = 25, 50, 75 mm is
inserted along its axis. Variation of the cojet parameter m assured the mounting of inte rchangeable grids
with different clogging coefficients in the central contractor.

The flow and heat transfer were studied in the interaction domain by using "dynamic" and "thermal"
plane obstacles permitting the measurement of the static pressure and the heat-transfer coefficient @ on the
obstacle surface, as well as the longitudinal component of the average velocity in the interaction domain near
the obstacle. The static pressure on the obstacle was measured by drainage of the "dynamic" obstacle with a
1-mm-diameter collector hole. The transducer DD-6, operating in the range to 0.4 bar, was used as pres-
sure sensor in conjunction with the measuring apparatus VI6-5MA and recording on an N-117 loop oscillograph

during continuous pulling of the obstacle across the jet with the distance tied to markers in the path. The
error in determining the pressure did not exceed 2%.
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